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Abstract. Quantum cylindric algebras were introduced by the author as
a generalization of their classical counterpart. Primary examples based on
Weaver’s treatment of the tensor power of a Hilbert space with diagonals
given by symmetric tensor products are called full quantum cylindric set
algebras. We generalize a result of Sudkamp in the classical setting and
axiomatize n-dimensional full quantum cylindric set algebras.

1. Introduction

Cylindric algebras were introduced by Tarski and his students Chin and
Thompson from 1948-52 (see [5] for details) to provide an algebraic treatment
of first-order logic. For a cardinal κ, a κ-dimensional cylindric algebra consists
of a Boolean algebra B with a family cα (α ∈ κ) of unary operations and for
each pair α, β ∈ κ a constant dα,β, all subject to certain equational axioms.
The idea is that κ is the cardinality of a set of variables, each cα expresses
universal quantification over that variable, and the dα,β expresses equality of
those variables. There is an extensive literature on cylindric algebras [3, 4]
and the related monadic algebras developed by Halmos [1].

A primary example of a κ-dimensional cylindric algebra is obtained by tak-
ing a set X, considering the Boolean algebra of all subsets of Xκ. For α ∈ κ,
the cylindrification cα of a subset A ⊆ Xκ is the set of all choice functions
σ ∈ Xκ that agree with a choice function in A except possibly at the α co-
ordinate. The diagonal dα,β is the set of all choice functions σ ∈ Xκ with
σ(α) = σ(β). This is called a full cylindric set algebra. The term cylindric set
algebra is used for any subalgebra of a full cylindric set algebra.

In [9] Sudcamp gave a characterization of n-dimensional full cylindric set
algebras. Let B be an n-dimensional cylindric algebra. Sudkamp defines B to
be strong if its underlying Boolean algebra is complete and atomic, and using
At for the atoms of B and ci for the composite of all cylindrifications cj where
j 6= i, satisfies

(T1) if p 6= 0, then c1 · · · cn p = 1,
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(T2) if x1, . . . , xn ∈ At then
∧n

1 c
ixi ∈ At.

Sudkamp shows that an n-dimensional cylindric algebra is isomorphic to a full
cylindric set algebra if and only if it is strong.

The notion of a κ-dimensional quantum cylindric algebra was introduced in
[2]. This consists of an orthomodular lattice (abbrev.: oml) with a family of
unary operations cα (α ∈ κ) and for each α, β ∈ κ a constant dα,β satisfying
a subset of the axioms used to define cylindric algebras. While a range of
examples were given from subfactor theory, the relevant issue here is that of a
full n-dimensional quantum cylindric set algebra. Such is obtained by taking
a tensor power H

⊗
n of a Hilbert space H, considering its oml L of closed

subspaces, defining operations ci via certain complete subalgebras of L, and
making diagonals di,j from obvious variants of the symmetric tensor product.
This is obtained from a path originally suggested in Weaver [11] and somewhat
related to work of Kornell on quantum sets [7].

The purpose of this note is to provide a result analogous to that of Sud-
kamp for quantum cylindric algebras. We provide axioms to define a strong
n-dimensional quantum cylindric algebra and then show that an n-dimensional
quantum cylindric algebra is strong if and only if it is isomorphic to a full n-
dimensional quantum cylindric set algebra.

This paper is arranged as follows. The second section has the basics of
quantum cylindric algebras and defines when a quantum cylindric algebra is
strong, both in the diagonal-free setting and in the diagonal setting. The third
section describes full n-dimensional quantum cylindric set algebras, both in the
diagonal-free and diagonal setting, and shows that they are strong. The fourth
section shows that any strong diagonal-free n-dimensional quantum cylindric
algebra is isomorphic to a diagonal-free full n-dimensional quantum cylindric
set algebra. The fifth section establishes the corresponding result in the setting
with diagonals, albeit with a familiar assumption ruling out an I2-factor. The
sixth section contains remarks on axiomatics.

2. Quantum cylindric algebras

We begin with the basic definition of a finite-dimensional quantum cylindric
algebra (we don’t have need consider higher dimension here). We note that
this was called a weak quantum cylindric algebra in [2, Def. 5.14], but the
current terminology seems more appropriate.

Definition 2.1. For a natural number n, a diagonal-free n-dimensional quan-
tum cylindric algebra is an oml L with unary operations ci for i ≤ n so that
for i, j,≤ n

(C1) ci0 = 0,
(C2) p ≤ cip,
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(C3) ci(p ∨ q) = cip ∨ ciq,
(C4) cicip = cip,
(C5) ci(cip)

⊥ = (cip)
⊥,

(C6) cicjx = cjcix.

The system is an n-dimensional quantum cylindric algebra if it additionally
has constants di,j for i, j,≤ n such that for any i, j, k ≤ n we have

(C7) di,j = dj,i and di,i = 1,
(C8) if j 6= i, k then di,k = cj(di,j ∧ dj,k).

Remark 2.2. The axioms for quantum cylindric algebras are a weakening of
those for cylindric algebras in two ways. First, the underlying structure is
assumed only to be an oml rather than a Boolean algebra. Also, an axiom
for cylindric algebras is simply omitted. This axiom says that for i 6= j,
ci(di,j ∧ x)∧ cj(di,j ∧ x′) = 0 and provides that the operation Sijx = ci(di,j ∧ x)
is an endomorphism of the underlying Boolean algebra and can serve as a
substitution operation. This axiom fails in interesting examples of quantum
cylindric algebras and no replacement has been found. For these reasons,
the quantum cylindric algebra axioms are significantly weaker than those for
cylindric algebras.

A unary operation c is called a quantifier if it satisfies (C1) – (C5). These
conditions say that it is a closure operation where the orthocomplement of a
closed element is closed. Conditions (C4) and (C6) say that compositions of
the operations ci (i ≤ n) of a diagonal-free quantum cylindric algebra form a
commutative, idempotent submonoid of the endomorphism monoid. Here the
empty composite is considered to be the identity.

Lemma 2.3. The composition of two commuting quantifiers is a quantifier.

Proof. The composition of two operations that preserve finite joins, are order
preserving, and are increasing is again such; and if the two operations are
idempotent and commute, then their composition is idempotent. For condition
(C5), suppose that c1, c2 are commuting quantifiers. Then c1c2(c1c2p)

⊥ =
c1c2(c2c1p)

⊥ = c1(c2c1p)
⊥ = c1(c1c2p)

⊥ = (c1c2p)
⊥. �

Definition 2.4. In an n-dimensional diagonal-free quantum cylindric algebra
set for i ≤ n
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ci = c1 · · · ci−1ci+1 · · · cn,
Qi = the range of the quantifier ci,

Qi = the range of the quantifier ci,

At = the set of atoms of L,

Ati = the set of atoms of Qi,

Ati = the set of atoms of Qi,

Atu = {x ∈ At : x =
∧n

1 c
ix}.

In an n-dimensional quantum cylindric algebra, set

d =
∧
{di,j : i, j ≤ n}, .

Atd = {x ∈ Atu : x ≤ d}.

We refer to d as the generalized diagonal.

Remark 2.5. Consideration of the range of a quantifier is very natural. The
range of a quantifier on a complete oml L is a complete subalgebra, meaning
that it is a sub-oml and is closed under all joins and meets as taken in L.
Conversely, any complete subalgebra of a complete oml gives a quantifier.
These easy facts are found in [2].

Lemma 2.6. If L is an n-dimensional diagonal-free quantum cylindric algebra,
then for each i ≤ n we have Qi =

⋂
{Qj : j 6= i}.

Proof. Without loss of generality we assume i = 1 so ci = c2 · · · cn. Suppose
p ∈ Qi. Then cip = p so p = c2 · · · cnp and this gives p = cjp for each j 6= i,
hence p ∈ Qj for each j 6= i, giving p ∈

⋂
{Qj : j 6= i}. Conversely, if

p ∈
⋂
{Qj : j 6= i} then p ∈ Qj for each j 6= i, giving cjp = p for each j 6= i.

Then cip = c2 · · · cn p = p, giving p ∈ Qi. �

We next give definitions of strong for n-dimensional diagonal-free quantum
cylindric algebras and for n-dimensional quantum cylindric algebras. We recall
that elements x, y of an oml L commute if they generate a Boolean subalgebra
of L and for S ⊆ L we write C(S) for the set of all elements of L that commute
with each element in S. See [6] for details.

Definition 2.7. An n-dimensional diagonal-free quantum cylindric algebra is
strong if L is isomorphic to the projection lattice of a Hilbert space and for
any i ≤ n and p 6= 0

(S1) c1 · · · cnp = 1,
(S2) C(Qi) = Qi,
(S3) there is x ∈ Atu with x ≤ cip,
(S4) if x, y ∈ Atu, then x ≤ ciy implies y ≤ cix.
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An n-dimensional quantum cylindric algebra is strong if L is isomorphic to
the projection lattice of a Hilbert space and for any i, j ≤ n and p 6= 0

(S1) c1 · · · cnp = 1,
(S2) C(Qi) = Qi,
(Sd3) there is x ∈ Atd with x ≤ cip,
(Sd4) if x, y ∈ Atd, then x ≤ ciy implies x = y,
(S5) if x, y ∈ Atd, then x ⊥ y implies cix ⊥ ciy,
(S6) di,j =

∨
{cix ∧ cjx : x ∈ Atd}.

3. Quantum cylindric set algebras

In this section we recall from [2] the definition of full n-dimensional quantum
set algebras, both with and without diagonals, and then show that they are
strong. We use the following notations. For a Hilbert space H, let P (H) be
its self-adjoint projections and C(H) be its closed subspaces. It is well known
that these are isomorphic omls. For v ∈ H we use 〈v〉 for its span and for
S ⊆ H we use 〈S〉 for the closure of its span.

Definition 3.1. For Hilbert spaces H and K, let

H⊗ C(K) = {H ⊗ A : A ∈ C(K)}.
This is a complete sub-oml of C(H⊗K) and therefore yields a quantifier ∃H
on C(H⊗K) where ∃HS is the least member of H⊗ C(K) that lies above S.

In the following, we use associativity of finite tensor products.

Definition 3.2. For Hilbert spaces H1, . . . ,Hn and i ≤ n let ∃Hi
be the quan-

tifier associated to the complete sub-oml of C(H1 ⊗ · · · ⊗ Hn) given by

Hi ⊗ C(
⊗

j 6=iHj)

Then the oml of closed subspaces of H1⊗· · ·⊗Hn with quantifiers ∃H1 , . . .∃Hn

is the n-dimensional full diagonal-free quantum cylindric set algebra associated
with H1, . . . ,Hn.

An explicit description of the quantifier ∃H on C(H ⊗ K) is given in [2,
Sec. 6]. Let (ai)I be an onb of H. Each v ∈ H⊗K can be uniquely expressed
as

∑
I ai ⊗ vi for some family (vi)I ∈ K. For S ⊆ H⊗K set

SH = 〈vi : v ∈ S and i ∈ I〉
Then by [2, Prop. 6.7], if S ∈ C(H⊗K), we have ∃HS = H⊗ SH.

Proposition 3.3. Let L be the n-dimensional diagonal-free quantum cylindric
set algebra associated to H1 ⊗ · · · ⊗ Hn. Then for i ≤ n we have

(1) Qi = Hi ⊗ C(
⊗

j 6=iHj),

(2) Qi = C(Hi)⊗
⊗

j 6=iHj,
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(3) Ati = {Hi ⊗ 〈v〉 : 0 6= v ∈
⊗

j 6=iHj},
(4) Ati = {〈a〉 ⊗

⊗
j 6=iHj : 0 6= a ∈ Hi},

(5) Atu = {〈a1〉 ⊗ · · · ⊗ 〈an〉 : 0 6= ai ∈ Hi for i ≤ n}.

Proof. (1) This is by definition. (2) By definition, Qi is the range of the
quantifier ci that is the composite of all the quantifiers ∃Hj

where j 6= i.
Using [2, Prop. 6.9] and a simple induction, this is the quantifier ∃⊗

j 6=iHj
.

The range of this quantifier is C(Hi)⊗
⊗

j 6=iHj . (3) and (4) are trivial from

(1) and (2). (5) Let x = 〈a1〉 ⊗ · · · ⊗ 〈an〉. Clearly x is an atom of L. Since
∃H1x = H1 ⊗ 〈a2〉 · · · ⊗ 〈an〉, . . ., ∃Hnx = 〈a1〉 ⊗ · · · ⊗ 〈an−1〉 ⊗ Hn, we have
that

∧n
1 ∃Hi

x = x, giving x ∈ Atu. Conversely, suppose x ∈ Atu. Then
∃Hi

x = Ai ⊗
⊗

j 6=iHi for some Ai ∈ C(Hi) and so
∧n

1 ∃Hi
x = A1 ⊗ · · · ⊗ An.

Since this latter expression is equal to the atom x, it must be that Ai = 〈ai〉
for some non-zero ai ∈ Hi, hence x = 〈a1〉 ⊗ · · · ⊗ 〈an〉. �

Remark 3.4. Making use of the isomorphism between projections and closed
subspaces, the subalgebraHi⊗C(

⊗
j 6=iHj) can be realized as 1Hi

⊗P(
⊗

j 6=iHj)
where this is the collection of all projection operators that are obtained as the
tensor product of the identity projection on Hi and a projection on the tensor
product of the other factors.

Proposition 3.5. For Hilbert spaces H1, . . . ,Hn, the associated n-dimensional
diagonal-free full quantum cylindric algebra is a strong n-dimensional diagonal-
free quantum cylindric algebra.

Proof. That this structure is an n-dimensional diagonal-free cylindric algebra
is established in [2, Th, 6.10]. We show that it is strong. For (S1) note that as
in the proof of Lemma 2.6 the range of the quantifier c1 · · · cn is Q1 ∩ · · · ∩Qn.
By known properties of tensor products this consists of only

⊗n
1 Hi and the

zero subspace (the bounds of the oml) and the result follows. For (S2) it is
well known that C(C(H)⊗K) = H⊗ C(K). The result then follows from the
descriptions of Qi and Qi given in Proposition 3.3. For (S3) we have that cip
is a non-zero element of Qi and so is equal to A⊗

⊗
j 6=iHj for some non-zero

closed subspace A of Hi. For j ≤ n choose non-zero aj ∈ Hj with ai ∈ A
and set x = 〈a1〉 ⊗ · · · ⊗ 〈an〉. Then x ≤ cip and by Proposition 3.3 x ∈ Atu.
For (S4) assume x, y ∈ Atu. By Proposition 3.3 for i ≤ n there are non-zero
ai, bi ∈ Hi with x = 〈a1〉 ⊗ · · · ⊗ 〈an〉 and y = 〈b1〉 ⊗ · · · ⊗ 〈bn〉. Since ciy is
least in Qi above y, we have ciy = 〈bi〉⊗

⊗
j 6=iHj. Thus x ≤ ciy iff 〈ai〉 = 〈bi〉,

and by symmetry this occurs iff y ≤ cix. �

For diagonals, which express a type of equality, we need a tensor power
H⊗n. The treatment is based on the idea from [11]. For F ⊆ {1, . . . , n}
the diagonal DF is the closed subspace of H⊗n that is the symmetric tensor
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product of those factors Hi with i ∈ F tensored with the tensor product of
those factors Hi with i 6∈ F . A more explicit description in given in [2, Sec. 6]
based on a well-known description of the symmetric tensor product in terms
of an orthonormal basis (abbrev.: onb). If (ai)I is an onb of H then each
v ∈ H⊗n has a unique representation

v =
∑
α∈In

λαaα1 ⊗ · · · ⊗ aαn

Note that if σ ∈ Perm(n) and α ∈ In, then the composite ασ = (aσ(1), . . . , aσ(n))
is in In.

Definition 3.6. Let H be a Hilbert space with onb (ai)I . Then for F ⊆
{1, . . . , n} let

DF =

{ ∑
α∈In

λαaα1 ⊗ · · · ⊗ aαn : λα = λασ for all σ ∈ Perm(n)

}
We use Di,j for D{i,j} and D for D{1,...,n}.

Yet another description of the diagonals DF is obtained from the well-known
result that an n-fold symmetric tensor product H⊗s · · · ⊗sH is the closure of
the span of all vectors of the form a⊗ · · · ⊗ a where a ∈ H.

Lemma 3.7. For F ⊆ {1, . . . , n} of cardinality k,

DF =

〈
a⊗ · · · ⊗ a︸ ︷︷ ︸

k times

⊗ v : a ∈ H and v ∈
⊗
i 6∈F

H

〉
Definition 3.8. Let H be a Hilbert space and n be a natural number. The
n-dimensional full quantum cylindric set algebra over H is the n-dimensional
diagonal-free quantum cylindric set algebra associated with H⊗n equipped with
diagonals Di,j for i, j ≤ n.

We conclude this section with the promised result showing that full quantum
cylindric algebras are strong.

Proposition 3.9. For a Hilbert space H and n ∈ N, the n-dimensional full
quantum cylindric set algebra over H is a strong n-dimensional quantum cylin-
dric algebra. Further, in it Atd = {〈a〉 ⊗ · · · ⊗ 〈a〉 : a ∈ H}.

Proof. That this structure is an n-dimensional diagonal-free cylindric algebra
is established in [2, Sec. 6]. (Note that this was called a weak quantum cylindric
algebra in [2]). We show here that this quantum cylindric algebra is strong.
Since the reduct is a full diagonal-free quantum cylindric set algebra, (S1) and
(S2) hold. Before verifying the other conditions, which involve Atd, we establish
the stated description of this set.
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By definition Atd is those elements of Atu that lie beneath the general-
ized diagonal D, hence that lie in the antisymmetric tensor product. By
Proposition 3.3, elements of Atu are those of the form 〈a1〉 ⊗ · · · ⊗ 〈an〉 where
a1, . . . , an ∈ H. So each 〈a〉 ⊗ · · · ⊗ 〈a〉 for a ∈ H belongs to Atd. But if
〈a1〉 ⊗ · · · ⊗ 〈an〉 belongs to the symmetric tensor product, then from one of
the many descriptions of the symmetric tensor product a1 ⊗ · · · ⊗ an is fixed
under permutations of indices, so a1, . . . , an are scalar multiples of one another.
So Atd is as described.

Using this description of Atd, the proof of (Sd3) involves only obvious modifi-
cations to the proof of (S3) from Proposition 3.5. For (Sd4) suppose x, y ∈ Atd.
Then there are 0 6= a, b ∈ H with x = 〈a〉 ⊗ · · · ⊗ 〈a〉 and y = 〈b〉 ⊗ · · · ⊗ 〈b〉.
Since cix = 〈a〉 ⊗

⊗
j 6=iH and ciy = 〈b〉 ⊗

⊗
j 6=iH, if cix = ciy then 〈a〉 = 〈b〉,

hence x = y. For (S5) let x, y ∈ Atd as above and assume x ⊥ y. Then
〈a〉 ⊥ 〈b〉 and it follows that cix ⊥ ciy. For (S6) if x = 〈a〉 ⊗ · · · ⊗ 〈a〉 belongs
to Atd, then cix ∧ cjx = 〈a〉 ⊗ 〈a〉 ⊗

⊗
k 6=i,jHk. By Lemma 3.7 such elements

generate Di,j as a closed subspace. �

4. Strong implies set for diagonal-free

In this section, we establish that a strong, n-dimensional diagonal-free quan-
tum cylindric algebra is an n-dimensional diagonal-free full quantum cylindric
set algebra. The subsequent section deals with diagonals. To avoid repetitious
work, it is useful for the reader to note that the proofs of this section requir-
ing (S3) or (S4) will hold equally well when replaced by (Sd3) and (Sd4) in the
following section. Throughout this section we assume that L is a strong n-
dimensional diagonal-free quantum cylindric algebra whose underlying lattice
is the projection lattice of the Hilbert space H.

Proposition 4.1. For each i ≤ n, Qi ∩Qi = {0, 1}.

Proof. By Lemma 2.6 Qi =
⋂
{Qj : j 6= i}, so Qi∩Qi =

⋂
{Qi : i ≤ n}. Surely

0, 1 belong to this intersection. If p belongs to this intersection, then p = cip
for each i ≤ n, hence p = c1 · · · cn p. By (S1) if p 6= 0 then p = 1. �

We use B for the set of all bounded operators of H, and for A ⊆ B we use
A′ for the set of operators that commute with each operator in A. The set
A′ is called the commutant of A. If A is closed under adjoints, expressed by
saying that A is self-adjoint, the double commutant A′′ is the unital von Neu-
mann subalgebra of B generated by A. We follow Murray and von Neumann
in calling unital von Neumann subalgebras of B subrings of B. It is well-
known [6] that for projections, commuting in the operator sense is equivalent
to commuting in the lattice-theoretic sense.
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Lemma 4.2. For P ⊆ L we have

C(C(P )) = P ′′ ∩ L.
Thus, P = C(C(P )) iff P is the set of projections of a subring of B.

Proof. “⊇”. Suppose p ∈ P ′′ ∩ L. Then p is a projection that commutes with
every operator in P ′. In particular, p commutes with every projection in P ′,
hence with every member of C(P ). So p ∈ C(C(P )).

“⊆”. Note that P is a subset of the bounded operators B of H that is self-
adjoint and contains the identity, and therefore the commutant P ′ has these
same properties. Further, since P ′ = P ′′′ by basic principles, we have that P ′

is a von Neumann algebra.
Suppose a is a self-adjoint element of P ′. Then the abelian von Neumann

algebra A that is generated by a is contained in P ′. The projections providing
the spectral representation of a are all in A, and hence in P ′. But these are
projections and therefore belong to C(P ).

If p ∈ C(C(P )) and a is a self-adjoint element of P ′ we have that p com-
mutes with all of the spectral projections for a since these all belong to C(P ),
and it follows that p commutes with a. Since every element in the von Neu-
mann algebra P ′ is a linear combination of self-adjoint elements in P ′, thus p
commutes with every element of P ′, hence p ∈ P ′′ ∩ L.

To see the final remark, suppose P = C(C(P )). Then P = P ′′∩L. But P is
self-adjoint since it consists of projections. Thus P ′′ is a unital von Neumann
subalgebra, so P is the projections of a unital von Neumann subalgebra of B.
Conversely, if M is a unital von Neumann subalgebra of B and P is its set of
projections, then it is known that M is generated as a von Neumann algebra
by P , so M = P ′′. Thus P = P ′′ ∩ L, giving P = C(C(P )). �

Definition 4.3. Let Mi = (Qi)
′′ and M i = (Qi)′′.

Note that since Qi and Qi are self-adjoint, Mi and M i are subrings of B.

Proposition 4.4. For i ≤ n

(1) Qi = Mi ∩ L,
(2) Qi = M i ∩ L,
(3) M i =

⋂
{Mj : j 6= i},

(4) Mi = (M i)′,
(5) M i = (Mi)

′.

Proof. (1) By (S2) we have Qi = C(Qi). This gives C(C(Qi)) = Qi. The result
follows by Lemma 4.2. (2) By Lemma 2.6 we have Qi =

⋂
{Qj : j 6= i}, it

then follows from (1) that Qi =
⋂
{Mj : j 6= i} ∩ L. Since the intersection

of subrings is a subring, we have that Qi is the projections of a subring, so
by Lemma 4.2 we have Qi = (Qi)′′ ∩ L = M i ∩ L. (3) The subrings M i
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and
⋂
{Mj : j 6= i} have the same projections and each subring is generated

by its projections, so they are equal. (4) By (S2) Qi = C(Qi). So by (1)
we have Mi ∩ L = (Qi)′ ∩ L. Since both Mi and (Qi)′ are subrings, and
subrings are determined by their projections, this gives Mi = (Qi)′. But
(Qi)′ = (Qi)′′′ = (M i)′. (5) Since Mi = (M i)′, we have (Mi)

′ = (M i)′′, and
since M i is a subring, (M i)′′ = M i. �

The following is from [8, Def 3.1.1] where the notation R(N1, . . . , Nn) was
used for the subring generated by the union of N1, . . . , Nn.

Definition 4.5. A family N1, . . . , Nn of subrings of B are a factorization if
Ni ⊆ N ′j for each i 6= j and R(N1, . . . , Nn) = B.

A factor [8, Def. 3.1.2] is a subring N with trivial intersection with its
commutant. Several basic facts are found in [8, p. 28]. A subring N is a factor
iff N,N ′ is a factorization; each member of a factorization is a factor; and if
N1, . . . , Nn is a factorization, then for each i the pair Ni, R({Nj : j 6= i})
is factorization. In [8, Def. 3.1.3] a factorization N1, N2 is called coupled if
N2 = N ′1. Since N ′′1 = N1 for any subring, in a coupled factor N ′2 = N1. We
call a factorization N1, . . . , Nn coupled if each Ni, R({Nj : j 6= i}) is coupled.

Proposition 4.6. M1, . . . ,Mn is a coupled factorization of H.

Proof. By Proposition 4.4.4 (M j)′ = Mj. Since M i =
⋂
{Mj : j 6= i} we have

M i ⊆ (M j)′ for each j 6= i. Having R(M1, . . . ,Mn) = B is equivalent to
having (M1)′ ∩ · · · ∩ (Mn)′ = CI, hence to having M1 ∩ · · · ∩Mn = CI. But
M2 ∩ · · · ∩Mn = (M1)

′. By Propositions 4.1 and 4.2 M1 ∩M1 ∩ L = {0, 1},
hence M1∩M1 = CI as required. Since the subring generated by {M j : j 6= i}
is equal to (

⋂
{(M j)′ : j 6= i})′ = (M i)′, this factorization is coupled. �

Thus far, we have used only (S1) and (S2). We make use of the remaining
conditions (S3) and (S4) in the following.

Proposition 4.7. Qi, Q
i are atomic and the atoms of Qi are {cix : x ∈ Atu}.

Proof. Suppose x ∈ Atu. If 0 6= p ∈ Qi and p ≤ cix, by (S3) there is y ∈ Atu
with y ≤ cip = p, hence with y ≤ ciy ≤ p. Then y ≤ p ≤ cix gives by (S4) that
x ≤ ciy. So x ≤ p. This implies cix ≤ p, giving p = cix. So cix is an atom of
Qi. By (S3) each 0 6= p ∈ Qi lies above some x ∈ Atu, so lies above the atom
cix of Qi. It follows that Qi is atomic and its atoms are as described. Thus
M i is a factor that has minimal projections. So by [8, Lem. 5.3.1] the same
is true of (M i)′ = Mi. By Lemma 4.4.4 the projections of Mi are Qi. Since a
factor with a minimal projection has an atomic projection lattice, the result
follows. �
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Remark 4.8. The reader should consider the proof of Proposition 4.7 in the
setting with diagonals and note that an analogous conclusion is obtained using
(Sd3) and (Sd4) in place of (S3) and (S4). Specifically, if (Sd3) and (Sd4) hold then
Qi, Q

i are atomic and the atoms of Qi are {cix : x ∈ Atd}.

A factorization N1, . . . , Nn is a direct factorization [8, Def. 3.2.1] if H is
isomorphic to H1 ⊗ · · · ⊗ Hn in such a way that Ni becomes the subring
denoted there as B(i) and which is given by [8, Def. 2.3.1] 1⊗· · ·⊗Bi⊗· · ·⊗1,
which is the collection of all operators of the form 1⊗ · · · ⊗Ai⊗ · · · ⊗ 1 where
Ai is a bounded operator of Hi.

Proposition 4.9. M1, . . . ,Mn is a direct factorization.

Proof. By Proposition 4.6, M1, . . . ,Mn is a factorization, and by Proposi-
tion 4.7 each factor M i has a minimal projection. Thus by [8, Thm. IV, p.40]
each factor M i is direct, and so by [8, Lem. 5.4.1] the factorization M1, . . . ,Mn

is direct. �

Theorem 4.10. Each strong n-dimensional diagonal-free quantum cylindric
algebra is an n-dimensional full diagonal-free quantum cylindric set algebra.

Proof. By Proposition 4.9 the factorization M1, . . . ,Mn is direct. So H is
isomorphic to H1 ⊗ · · · ⊗Hn in such a way that M i becomes B(i) = 1⊗ · · · ⊗
Bi⊗· · ·⊗1. Basic properties of tensor products give (M i)′ = 1Hi

⊗B(
⊗

j 6=iHj).

Since (M i)′ = Mi, it follows that Qi = Mi ∩ L = 1Hi
⊗ P(

⊗
j 6=iHj). Then

since Qi is the complete subalgebra of L associated to the quantifier ci and
this subalgebra is isomorphic to Hi ⊗ C(

⊗
j 6=iHj), the result follows from

Definition 3.2. �

5. Strong implies set with diagonals

In this section we show that under mild conditions, a strong n-dimensional
quantum cylindric algebra is isomorphic to an n-dimensional full quantum
cylindric set algebra. We begin with the following.

Proposition 5.1. The diagonal-free reduct of a strong n-dimensional quantum
cylindric algebra is a diagonal-free full quantum cylindric set algebra.

Proof. The diagonal-free reduct satisfies (S1) and (S2). It also satisfies (Sd3) and
(Sd4), which according to Remark 4.8 is enough to obtain a slightly modified
form of Proposition 4.7. This modified form of Proposition 4.7 gives minimal
projections that are needed for the proof of Theorem 4.10. �

In the following, we assume that L is a strong n-dimensional quantum cylin-
dric algebra. In view of Proposition 5.1, the diagonal-free reduct of L is a
diagonal-free full quantum cylindric set algebra. We make use of the notation
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and results of the previous section. In particular, there are Hilbert spaces
H1, . . . ,Hn so that L is the projection lattice of

⊗n
1 Hi. For i ≤ n, the ranges

of the quantifiers ci, c
i are Qi, Q

i and the descriptions of Qi, Q
i and of the atom

sets Ati,At
i and Atu are as in Proposition 3.3.

Definition 5.2. An orthogonality space (X,⊥) is a set X with a symmetric
binary relation ⊥ on it. An isomorphism between orthogonality spaces is a
bijection φ with p ⊥ q iff φp ⊥ φq.

Any subset of L can be considered as an orthogonality space where the
orthogonality relation is the restriction of orthogonality in the oml L, namely
with p ⊥ q iff p ≤ q⊥. In particular, we consider Ati and Atd as orthogonality
spaces.

Proposition 5.3. ci : Atd → Ati is an isomorphism of orthogonality spaces.

Proof. As discussed in Remark 4.8, the proof of Proposition 4.7 carries over
with minor modification, using (Sd3) and (Sd4) in place of (S3) and (S4), to give
that the atoms Ati of Qi are {cix : x ∈ Atd}. So ci : Atd → Ati is well defined
and onto. Axiom (S4) gives that ci is one-one, and then (S5) provides that it
is an orthogonality space isomorphism. �

Definition 5.4. For a Hilbert space H, let AtH be the orthogonality space
formed from the atoms of C(H).

Elements of AtHi
are those of the form 〈ai〉 where ai ∈ Hi is non-zero.

By Proposition 3.3, Qi = C(Hi) ⊗
⊗

j 6=iHj, so elements of Ati are those of

the form 〈ai〉 ⊗
⊗

j 6=iHj. So there are mutually inverse orthogonality space

isomorphisms µi : Ati → AtHi
and νi : AtHi

→ Ati that interchange 〈ai〉
and 〈ai〉 ⊗

⊗
j 6=iHj. Since Atd ⊆ Atu, each element of Atd is of the form

〈a1〉⊗· · ·⊗〈an〉 for some family 〈a1〉 ∈ AtH1 , . . . , 〈an〉 ∈ AtHn . The isomorphism
ci : Atd → Ati takes 〈a1〉⊗· · ·⊗〈an〉 to 〈ai〉⊗

⊗
j 6=iHj. The inverse of ci, which

we write di, takes 〈ai〉 ⊗
⊗

j 6=iHj to the unique member of Atd that has 〈ai〉
as its ith tensor factor. The composite γi,j : AtHi

→ AtHj
is an orthogonality

space isomorphism. It takes 〈ai〉 to 〈aj〉 if 〈ai〉 and 〈aj〉 occur as tensor factors
of the same member of Atd. Clearly γi,j and γj,i are inverses.

Atd Atj AtHj

cj

dj

µj

νj
AtiAtHi

ci

di

µi

νi

γi,j

γj,i
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Definition 5.5. For a Hilbert space H, its conjugate space H is the same
abelian group as H with scalar multiplication λ · v being the scalar multiple
by the conjugate λv taken in H, and with inner product [u, v] in H being the

conjugate 〈u, v〉 of the inner product in H.

It is well known that H is a Hilbert space. A map U : H → K is anti-unitary
if when considered as a map U : H → K it is unitary. We will make use of the
following result of Uhlhorn [10] that extends Wigner’s theorem.

Theorem 5.6. For Hilbert spaces H,K of dimension ≥ 3, each isomorphism
φ : AtH → AtK lifts to a unique unitary or anti-unitary map φ̂ : H → K.

The dimension of a Hilbert space is the cardinality of a maximal pairwise
orthogonal set in the orthogonality space formed from its atoms. Since the
orthogonality spaces Ati are isomorphic, the Hilbert spaces Hi all have the
same cardinality. To make use of Ulhorn’s theorem, for the remainder of this
section we assume that one, hence all, of the Hilbert spaces Hi has dimension
greater than 2.

Definition 5.7. Let γ̂i : Hi → H1 be the unique unitary or anti-unitary map
lifting γi,1.

For a Hilbert space H, let H+ = H and H− = H be the conjugate space.
Note that C(H) = C(H). Let α ∈ {+,−}n be given by αi = + if γ̂i is unitary
and αi = − if γ̂i is anti-unitary. Then γ̂i : Hi → Hαi

1 is unitary for each
i ≤ n. As with any unitary (or anti-unitary) map between Hilbert spaces,
γ̂i induces an isomorphism between their omls of closed subspaces via direct
images. Further, γ̂i〈ai〉 = γi,1〈ai〉 since γ̂i lifts γi,1.

Definition 5.8. Let γ̂ :
⊗n

1 Hi →
⊗n

i H
αi
1 be γ̂1 ⊗ · · · ⊗ γ̂n.

Since γ̂ is unitary, it indices an oml-isomorphism from L = C(
⊗n

1 Hi) to
L∗ = C(

⊗n
1 H

αi
1 ) via direct images and we denote this isomorphism of omls

also by γ̂. Since L carries the structure of a strong n-dimensional quantum
cylindric algebra, this can be moved across the isomorphism to provide L∗

with such structure.

Definition 5.9. Let c∗i and d ∗i,j be the operations induced on L∗ by γ̂.

Since cix is the least element in Qi = Hi ⊗ C(
⊗

j 6=iHj) lying above x and

γ̂ takes Qi to Q∗i = Hαi
1 ⊗ C(

⊗
j 6=iH

αj

1 ), moving ci across γ̂ for i ≤ n provides

the diagonal-free quantum cylindric algebra structure associated to
⊗n

1 H
αi
1 .

To treat the derived diagonal structure on L∗ we use the following.

Lemma 5.10. The image At∗d of Atd under γ̂ is {〈a〉⊗ · · ·⊗ 〈a〉 : 〈a〉 ∈ AtH1}.
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Proof. Let x = 〈a1〉 ⊗ · · · ⊗ 〈an〉 belong to Atd. Then the image of x under γ̂
is γ̂1〈a1〉 ⊗ · · · ⊗ γ̂n〈an〉. As noted above, γ̂i〈ai〉 = γi,1〈ai〉 for each i ≤ n. But
〈a1〉 and 〈ai〉 occur as tensor factors of the some element of Atd, namely x, for
each i ≤ n. So γi,1〈ai〉 = 〈a1〉 for each i ≤ n. So γ̂x = 〈a1〉 ⊗ · · · ⊗ 〈a1〉. That
each 〈a〉 ⊗ · · · ⊗ 〈a〉 is in the image of Atd follows as each 〈a〉 ∈ AtH1 occurs as
a tensor factor of some element of Atd. �

Lemma 5.11. d ∗i,j =
∨
{〈a〉 ⊗ 〈a〉 ⊗

⊗
k 6=i,jH

αk
1 : 〈a〉 ∈ AtH1}.

Proof. Since L is strong, condition (S6) gives di,j =
∨
{cix ∧ cjx : x ∈ Atd}.

Since d ∗i,j = γ̂di,j, we have d ∗i,j =
∨
{(ci)∗y ∧ (cj)∗y : y ∈ At∗d}. We noted that

the induced operations c∗i are those associated with the diagonal-free quantum
cylindric set algebra

⊗n
1 H

αi
1 . Since ci is the composite of all cj for j 6= i,

we have that (ci)∗ is the composite of the c∗j for j 6= i. So (ci)∗y is the least

element of (Qi)∗ = C(Hαi
1 ) ⊗

⊗
j 6=iH

αj

1 above y. From the description of the

elements y ∈ At∗d of Lemma 5.11 the elements obtained as (ci)∗y ∧ (cj)∗y are
those of the form 〈a〉 ⊗ 〈a〉 ⊗

⊗
k 6=i,jH

αk
1 for 〈a〉 ∈ AtH1 . �

Lemma 5.12. If αi 6= αj, then d ∗i,j = 1.

Proof. Let S be the set of all elements of the form a⊗a⊗ v where a ∈ H1 and
v ∈

⊗
k 6=i,jH

αk
1 . Throughout we use the convention that the first listed factor

in a tensor is for Hαi
1 , the second is for Hαj

1 and the third is for
⊗

k 6=i,jH
αk
1 .

We will use H for
⊗n

1 H
αi
1 . By Lemma 5.11, it is enough to show that the

closed subspace 〈S〉 generated by S is H.
Let (ep)P be an onb of H1. This same set is an onb of Hαi

1 for each i ≤ n.
So the ep1 ⊗ · · · ⊗ epn where p1, . . . , pn ∈ P are an onb of H. Therefore, our
result will follow if we show that for each p, q ∈ P and each v ∈

⊗
k 6=i,jH

αk
1

that ep ⊗ eq ⊗ v belongs to 〈S〉.
Fix v. Note first that from the definition of S

(1) ep ⊗ ep ⊗ v ∈ S for each p ∈ P

For p, q ∈ P , note that

(ep + eq)⊗ (ep + eq)⊗ v = ep ⊗ ep ⊗ v + ep ⊗ eq ⊗ v + eq ⊗ ep ⊗ v + eq ⊗ eq ⊗ v

Then, making use of (1) we have

(2) ep ⊗ eq ⊗ v + eq ⊗ ep ⊗ v ∈ 〈S〉 for each p, q ∈ P

For the final step, we use ·i, ·j and ·i,j for scalar multiplication in Hαi
1 , Hαj

1

and Hαi
1 ⊗ H

αj

1 respectively. We use · for scalar multiplication in H. Recall
that the first listed factor is the ith and the second the jth. Also, as we have
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assumed that αi 6= αj we have that λ ·j a = λ ·i a. Note

(ep + i ·i eq)⊗ (ep + i ·i eq)⊗ v = ep ⊗ ep ⊗ v + (i ·i eq)⊗ (i ·i eq)⊗ v
+ ep ⊗ (i ·i eq)⊗ v + (i ·i eq)⊗ ep ⊗ v

Since the left side of this equation and the first two terms of the right side of
the equation are of the form a ⊗ a ⊗ v, by (1) they belong to S. So the sum
of the final two terms of the right side of the equation belongs to 〈S〉. But

ep ⊗ (i ·i eq)⊗ v + (i ·i eq)⊗ ep ⊗ v
= ep ⊗ (−i ·j eq)⊗ v + (i ·i eq)⊗ ep ⊗ v
= [i ·i,j (ep ⊗ (−eq))]⊗ v + [i ·i,j (eq ⊗ ep)]⊗ v
= i · [ep ⊗ (−eq)⊗ v + eq ⊗ ep ⊗ v]

Since the element in this equation belongs to 〈S〉, so does any scalar multiple
of it, giving

(3) ep ⊗ (−eq)⊗ v + eq ⊗ ep ⊗ v ∈ 〈S〉 for each p, q ∈ P

Comparing (2) and (3) gives ep ⊗ eq ⊗ v ∈ 〈S〉 as required. �

Theorem 5.13. Let L be a strong n-dimensional quantum cylindric algebra.
If for some i ≤ n the image of ci has at least 3 pairwise orthogonal atoms,
then L is isomorphic to an n-dimensional full quantum cylindric set algebra.

Proof. By Proposition 5.1, the diagonal-free reduct of L is an n-dimensional
quantum cylindric set algebra associated with

⊗n
1 Hi. The atom set of the

image of ci is Ati and this is isomorphic to the atom set of C(Hi). Since some Ati

for i ≤ n has at least at least 3 pairwise orthogonal elements the assumption
enforced after Theorem 5.6 that some Hi has dimension ≥ 3 holds. So L is
isomorphic to L∗ whose diagonal-free structure is that associated with

⊗n
1 H

αi
1 .

If we can show that αi = + for each i ≤ n, then it follows by Lemmas 3.7
and 5.11 that the diagonal structure of L∗ is also that of the n-dimensional
full quantum cylindric set algebra associated with H⊗n1 .

Let P be the set of indices i ≤ n with αi = + and N be those indices with
αi = −. By definition, the map γ1,1 is the identity on AtH1 so its lift γ̂1 is
the identity on H1 and is therefore unitary. So α1 = +. Suppose that N is
nonempty. By Lemma 5.12, d ∗i,j = 1 if αi and αj have opposite signs. But
under our assumption that N is non-empty, if i, j are such that αi and αk have
the same sign, there is j so that αj has opposite sign to αi, αk. So d ∗i,j∧d ∗j,k = 1.
Condition (C8) gives d ∗i,k = c∗j(d

∗
i,j ∧d ∗j,k). Thus d ∗i,k = 1. Thus d ∗i,j = 1 for each

i, j, and as the generalized diagonal d∗ is the meet of all the diagonals d ∗i,k, it too
is equal to 1. Then by definition of At∗d = Atu = {〈a1〉⊗· · ·⊗〈an〉 : ai ∈ AtH1}.
This easily yields contradictions with (Sd3) and (Sd4). For instance, taking a, b
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orthogonal in H1 and setting x = 〈a〉 ⊗ · · · ⊗ 〈a〉 and y = 〈b〉 ⊗ 〈a〉 ⊗ · · · ⊗ 〈a〉
we have x ⊥ y and (c2)∗x = (c2)∗y.

This contradiction shows that indeed all αi = + hence L is isomorphic to
the quantum cylindric set algebra associated with H⊗n. �

Remark 5.14. We do not know if an n-dimensional diagonal cylindric set
algebra based on (C2)⊗n can have diagonal structure satisfying (Sd3), (S

d
4), (S5)

and (S6) that is not given by symmetric tensor products. The question is
natural because of its relation to an n-qubit system.

6. Axiomatics

In this final section we make a number of remarks and observations about
axiomatics. We begin with similarities and differences between the classical
and quantum settings.

Remark 6.1. Both the classical and quantum setting have an assumption
that the underlying order structure is of a certain form — a powerset Boolean
algebra in the classical case and the oml of subspaces of a Hilbert space in
the quantum setting.

Remark 6.2. Both the classical and quantum settings make fundamental use
of the set of atoms x for which x =

∧n
1 c

ix. In the classical setting this is
required to be the set of all atoms. In the quantum setting, this is the set Atu
of unentangled atoms.

Remark 6.3. In both the classical and quantum settings, the resulting cylin-
dric algebra is obtained by taking an n-fold “power” of a structure formed
from the members of Atu that lie beneath the generalized diagonal d. In the
classical setting, this structure is a set X and n-fold power is the set Xn that
forms a cylindric set algebra. In the quantum setting, Atd is the orthogonal-
ity space of a Hilbert space H and the n-fold tensor power H⊗n yields the
quantum cylindric set algebra.

As mentioned in Remark 2.2 a quantum cylindric algebra is a significantly
weaker structure than a classical cylindric algebra, so additional axioms are
needed for strongness in the quantum setting. We next compare axioms for
diagonal-free strongness in the classical and quantum settings.

Remark 6.4. Condition (S1) is condition (T1) of a strong cylindric algebra
in the classical setting. Condition (S3) is derived [9, Thm. 1.13] for strong
classical cylindric algebras from axiom (T2). In the classical setting (S4) is
true for atoms x, y in any diagonal-free cylindric algebra. Indeed, x ≤ ciy
implies ciy 6≤ (cix)⊥, and as (cix)⊥ belongs to Qi, that y 6≤ (cix)⊥, so if y is
an atom in a Boolean algebra, y ≤ cix. This final step is not valid for atoms
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in an oml, so we require an axiom to deal with this. Condition (S2), which
is discussed in greater detail below, has two parts. One part says that certain
elements commute, which is automatic in the classical setting. The other part
limits the amount of commutativity. This is a purely quantum phenomenon
and has no counterpart in the classical setting where all elements commute.

Remark 6.5. The strongness axioms in the classical setting do not directly
involve the diagonals. In the presence of strongness, the other axioms of
classical cylindric algebras, in particular the axiom related to substitution,
provides that the diagonal structure is uniquely determined. This is not the
case in the quantum setting. On the diagonal-free full quantum cylindric set
algebra associated with H1 ⊗ · · · ⊗ Hn, we can define diagonals di,j = 1 for
each i, j and obtain a quantum cylindric set algebra that satisfies (S1) - (S4).
Axiom (S6) explicitly describes diagonals in terms of the cylindric structure
and holds also in the classical setting.

In the remainder of this section we consider axiom (S2) which states that
C(Qi) = Qi. This is a higher-level axiom and we break it into lower-level
pieces. For this, we introduce two additional axioms.

Definition 6.6. For each p, q ∈ L and i ≤ n let

(S7) cip = (cip ∨ ciq) ∧ (cip ∨ (ciq)
⊥),

(S8) cip =
∨
{(p ∨ ciq) ∧ (p ∨ ci(q⊥)) : q ∈ L}.

In the following, we work in the diagonal-free setting since the arguments do
not involve diagonals. The results apply to the setting with diagonals replacing
(S3), (S4) with (Sd3), (S

d
4).

Proposition 6.7. Axioms (S1), (S3), (S4), (S7), (S8) imply (S2).

Proof. Since the range of ci is Qi and that of ci is Qi, Axiom (S7) says that each
member of Qi commutes with each member of Qi. This gives that Qi ⊆ C(Qi).
For the converse, suppose that p ∈ C(Qi). Then (p ∨ ciq) ∧ (p ∨ ci(q⊥)) = p
for each q ∈ L. Then Axiom (S8) gives cip = p, hence p ∈ Qi. This shows
C(Qi) ⊆ Qi. �

Proposition 6.8. Axioms (S7), (S8) are valid in a diagonal-free n-dimensional
full quantum cylindric set algebra L.

Proof. By Proposition 3.9, (S2) holds in L, hence (S7) holds. Let p, q ∈ L. Since
p ≤ cip we have (p ∨ ciq) ∧ (p ∨ (ciq)⊥) ≤ (cip ∨ ciq) ∧ (cip ∨ (ciq)⊥). By (S7)

the latter expression equals to cip. Set s =
∨
{(p∨ ciq)∧ (p∨ (ciq)⊥) : q ∈ L}.

Then s ≤ cip. We must show equality.
For x ∈ At consider

(4) cix ≤
∨
{(x ∨ ciq) ∧ (x ∨ (ciq)⊥) : q ∈ L}.
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Suppose we show that (4) holds for all x ∈ At. Since ci is a quantifier, it
preserves existing joins. Since P is the join of the atoms beneath it, we then
have cip =

∨
{cix : x ∈ At and x ≤ p}. It then follows from (4) that

cip ≤
∨
{(x ∨ ciq) ∧ (x ∨ (ciq)⊥) : q ∈ L, x ∈ At and x ≤ p}.

This latter expression is the join of terms, each lying beneath s, so it follows
that cip ≤ s. So it is enough to show that (4) holds.

Since (4) involves only ci and ci, we may assume that our diagonal-free
quantum cylindric set algebra is based on H ⊗ K and i = 2. So ci becomes
∃K and ci becomes ∃H. Let x = 〈v〉 be an atom of C(H ⊗ K). For (bi)I an
onb of K we express v =

∑
I vi ⊗ bi. Using the description of ∃K given after

Definition 3.2 we have cix = 〈{vi : i ∈ I}〉 ⊗ K. To show (4) it is enough to
show

(5) 〈{vi : i ∈ I}〉 ⊗ K ⊆
∨
w∈K

(〈v〉+H⊗ 〈w〉) ∩ (〈v〉+H⊗ 〈w〉⊥).

Let rhs be the right side of the containment given in (5). For each i ∈ I
we claim that vi ⊗ bi ∈ rhs. Clearly vi ⊗ bi belongs to the first term of
(〈v〉+H⊗ 〈bi〉)∩ (〈v〉+H⊗ 〈bi〉⊥). But v =

∑
I vi⊗ bi belongs to the second

term of the intersection, and each vj ⊗ bj for j 6= i belongs to the second term
since bj ⊥ bi. So vi ⊗ bi is also in this second term. Thus vi ⊗ bi ∈ rhs.

We next show vi ⊗ bj ∈ rhs for each i, j ∈ I. To ease notation we show
v0 ⊗ b1 ∈ rhs. As a first step, consider

(〈v〉+H⊗ 〈b0 + b1〉) ∩ (〈v〉+H⊗ 〈b0 + b1〉⊥).

Since v =
∑

I vi⊗ bi, v0⊗ b0 + v0⊗ b1, and v1⊗ b0 + v1⊗ b1 belong to the first
term, so does −v1 ⊗ b0 − v0 ⊗ b1 +

∑
i≥2 vi ⊗ bi. Note that b0 − b1 ⊥ b0 + b1.

So −v, v0 ⊗ b0 − v0 ⊗ b1, and v1 ⊗ b0 − v1 ⊗ b1 are in the second term. Thus
−v1 ⊗ b0 − v0 ⊗ b1 −

∑
i≥2 vi ⊗ bi belongs to the second term. Each vi ⊗ bi for

i ≥ 2 belongs to this second term since each such bi is orthogonal to b0 + b1,
and this gives −v1⊗b0−v0⊗b1 +

∑
i≥2 vi⊗bi is also in the second term, hence

in both terms, and therefore in rhs. But each vi ⊗ bi for i ∈ I is in rhs, and
it follows that v1 ⊗ b0 + v0 ⊗ b1 ∈ rhs.

As a second step to showing that v0 ⊗ b1 ∈ rhs consider

(〈v〉+H⊗ 〈b0 − ib1〉) ∩ (〈v〉+H⊗ 〈b0 − ib1〉⊥).

Using the same argument as above, since v0⊗b0− iv0⊗b1 and iv1⊗b0 +v1⊗b1
are in the first term, so is −iv1 ⊗ b0 + iv0 ⊗ b1 +

∑
i≥2 vi ⊗ bi. Note that

b0 + ib1 ⊥ b0 − ib1. So v =
∑

I vi ⊗ bi, v0 ⊗ b0 + iv0 ⊗ b1 and iv1 ⊗ b0 − v1 ⊗ b1
are in the second term, hence so is iv1⊗ b0− iv0⊗ b1−

∑
i≥2 vi⊗ bi. As vi⊗ bi

for i ≥ 2 is in rhs, iv1 ⊗ b0 − iv0 ⊗ b1 ∈ rhs. Thus −v1 ⊗ b0 + v0 ⊗ b1 ∈ rhs.
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From above, v1 ⊗ b0 + v0 ⊗ b1 ∈ rhs, and it follows that v1 ⊗ b0 and v0 ⊗ b1
are in rhs as desired.

Since vi ⊗ bj ∈ rhs for each i, j ∈ I, the containment (5) follows. �

Combining Propositions 6.7 and 6.8 we have the following.

Theorem 6.9. In the axiomatization of n-dimensional full quantum cylindric
set algebras, both without and with diagonals, (S2) can be replaced with (S7)

and (S8).
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